DYNAMIC ELASTOPLASTIC INTERACTION

BETWEEN AN IMPACTOR AND A SPHERICAL SHELL

D. G. Biryukov and I. G. Kadomtsev

Abstract

Dynamic axisymmetric elastoplastic interaction between a massive body and a simply supported, circular segment of a spherical shell is studied. The problem of determining the contact-interaction force is formulated for the case of spherical and conical bodies. A nonlinear integral equation is derived for various models of local plastic compression using the equations of equilibrium of a membrane spherical shell written in terms of radial displacement of the shell. Numerical results are presented graphically.

Assuming that the mutual velocity is much lower than the velocity of elastic waves in the materials, we reduce the dynamic problem to a quasistatic problem by ignoring inertia effects in the local-compression zone. Displacements of the shell are considered elastic except in the contact zone, where elastoplastic deformation occurs. Initially, the shell is at rest. A body of mass m with elastic constants E_{2} and ν_{2} and plastic constant k_{2} impacts on the shell vertex.

We denote the displacement of the falling body by s, the displacement of the shell at the contact point by w, and the local plastic compression by α. In this case, we have [1]

$$
\begin{equation*}
s=w+\alpha . \tag{1}
\end{equation*}
$$

To determine the displacement of the impactor s, we use the differential equation of motion $m \ddot{s}=-P(t)$. Integration of this equation subject to the initial conditions $s_{0}=0$ and $\dot{s}_{0}=V_{0}$ yields

$$
\begin{equation*}
s(t)=V_{0} t-\frac{1}{m} \int_{0}^{t} \int_{0}^{t_{1}} P\left(t_{2}\right) d t_{2} d t_{1} \tag{2}
\end{equation*}
$$

where V_{0} is the initial velocity of the impactor directed along the shell radius.
The displacement of the shell due to the force applied to its vertex is determined from the equations of motion of a membrane spherical shell:

$$
\begin{gather*}
\left(N_{\varphi} \sin \varphi\right)_{, \varphi}-N_{\theta} \cos \varphi=\rho h R_{1} \ddot{u}_{\varphi} \sin \varphi, \quad N_{\varphi}+N_{\theta}=-\rho h R_{1} \ddot{w}+q_{3} R_{1} ; \tag{3}\\
N_{\varphi}=E_{1} h\left(\left(1-\nu_{1}^{2}\right) R_{1}\right)^{-1}\left(u_{\varphi, \varphi}+w+\nu_{1}\left(u_{\varphi} \cot \varphi+w\right)\right), \tag{4}\\
N_{\theta}=E_{1} h\left(\left(1-\nu_{1}^{2}\right) R_{1}\right)^{-1}\left(u_{\varphi} \cot \varphi+w+\nu_{1}\left(u_{\varphi, \varphi}+w\right)\right) .
\end{gather*}
$$

Here ρ is the density of the material, h and R_{1} are the thickness and radius of the shell, q_{3} is the load, and E_{1} and ν_{1} are the elastic constants of the shell; the coordinate lines φ and θ are directed along a meridian and a parallel, respectively. The plastic constant of the shell is denoted by k_{1}.

The boundary conditions have the form

$$
\begin{equation*}
\left.u_{\varphi}\right|_{\varphi=\varphi_{0}}=0,\left.\quad w\right|_{\varphi=\varphi_{0}}=0, \tag{5}
\end{equation*}
$$

where φ_{0} is the shell opening angle.

Rostov State University, Rostov-on-Don 344090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 43, No. 5, pp. 171-175, September-October, 2002. Original article submitted March 13, 2002.

We introduce the following dimensionless quantities: $v=u_{\varphi} / R_{1}, w=w / R_{1}, \tau=t c / R_{1}$, and $c^{2}=E_{1}((1-$ $\left.\left.\nu_{1}^{2}\right) \rho\right)^{-1}$. Then, Eqs. (3) and (4) are written as

$$
\begin{gathered}
\left(N_{\varphi} \sin \varphi\right)_{, \varphi}-N_{\theta} \cos \varphi=E_{1} h\left(1-\nu_{1}^{2}\right)^{-1} v_{, \tau \tau} \sin \varphi, \\
N_{\varphi}+N_{\theta}=-E_{1} h\left(1-\nu_{1}^{2}\right)^{-1} w_{, \tau \tau}+q_{3} R_{1}, \\
N_{\varphi}=E_{1} h\left(1-\nu_{1}^{2}\right)^{-1}\left(v_{, \varphi}+w+\nu_{1}(v \cot \varphi+w)\right), \\
N_{\theta}=E_{1} h\left(1-\nu_{1}^{2}\right)^{-1}\left(v \cot \varphi+w+\nu_{1}\left(v_{, \varphi}+w\right)\right) .
\end{gathered}
$$

Elimination of the forces N_{φ} and N_{θ} from these equations yields

$$
\begin{gathered}
v_{, \varphi \varphi} \sin \varphi+v_{, \varphi} \cos \varphi-\left(\cot \varphi \cos \varphi+\nu_{1} \sin \varphi\right) v+\left(1+\nu_{1}\right) w_{, \varphi} \sin \varphi=v_{, \tau \tau} \sin \varphi, \\
\left(1+\nu_{1}\right)\left(v_{, \varphi}+v \cot \varphi+2 w\right)=-w_{, \tau \tau}+q, \quad q=\left(1-\nu_{1}^{2}\right)\left(E_{1} h\right)^{-1} R_{1} q_{3} .
\end{gathered}
$$

We make the replacement $v_{\varphi}=v \sin \varphi$:

$$
\begin{gathered}
v_{\varphi, \varphi \varphi}-v_{\varphi, \varphi} \cot \varphi+\left(1-\nu_{1}\right) v_{\varphi}+\left(1+\nu_{1}\right) w_{, \varphi} \sin \varphi=v_{\varphi, \tau \tau}, \\
\left(1+\nu_{1}\right)\left(v_{\varphi, \varphi} \sin ^{-1} \varphi+2 w\right)=-w_{, \tau \tau}+q .
\end{gathered}
$$

We apply the Laplace transform over time t denoting the images v_{φ}, w, and q by v_{φ}^{*}, w^{*}, and q^{*}, respectively:

$$
\begin{gather*}
v_{\varphi, \varphi \varphi}^{*}-v_{\varphi, \varphi}^{*} \cot \varphi+\left(1-\nu_{1}-p^{2}\right) v_{\varphi}^{*}+\left(1+\nu_{1}\right) w_{, \varphi}^{*} \sin \varphi=0, \tag{6}\\
\left(1+\nu_{1}\right) v_{\varphi, \varphi}^{*} \sin ^{-1} \varphi+\left(2\left(1+\nu_{1}\right)+p^{2}\right) w^{*}=q^{*} .
\end{gather*}
$$

System (6) can be written as

$$
\begin{gathered}
\left(v_{\varphi, \varphi}^{*} \sin ^{-1} \varphi\right)_{, \varphi}+\left(1-\nu_{1}-p^{2}\right) v_{\varphi}^{*} \sin ^{-1} \varphi+\left(1+\nu_{1}\right) w_{, \varphi}^{*}=0, \\
\left(1+\nu_{1}\right)\left(v_{\varphi, \varphi}^{*} \sin ^{-1} \varphi\right)_{, \varphi}+\left(2\left(1+\nu_{1}\right)+p^{2}\right) w_{, \varphi}^{*}=q_{, \varphi}^{*}
\end{gathered}
$$

Eliminating $\left(v_{\varphi, \varphi}^{*} \sin ^{-1} \varphi\right)_{, \varphi}$, we obtain

$$
v_{\varphi}^{*}=\sin \varphi\left(\left(1+\nu_{1}\right)\left(1-\nu_{1}-p^{2}\right)\right)^{-1}\left(w_{, \varphi}^{*}\left(1-\nu_{1}^{2}+p^{2}\right)-q_{, \varphi}^{*}\right) .
$$

Differentiation of the expression for v_{φ}^{*} with respect to φ yields

$$
v_{\varphi, \varphi}^{*}=\left(\left(1+\nu_{1}\right)\left(1-\nu_{1}-p^{2}\right)\right)^{-1}\left(\left(1-\nu_{1}^{2}+p^{2}\right)\left(w_{, \varphi \varphi}^{*} \sin \varphi+w_{, \varphi}^{*} \cos \varphi\right)-\left(q_{, \varphi \varphi}^{*} \sin \varphi+q_{, \varphi}^{*} \cos \varphi\right)\right) .
$$

Inserting the last expression into the second equation in (6), we obtain the following equation for w^{*} :

$$
\begin{equation*}
\nabla^{2} w^{*}+\left(2\left(1-\nu_{1}^{2}\right)-\left(1+3 \nu_{1}\right) p^{2}-p^{4}\right)\left(1-\nu_{1}^{2}+p^{2}\right)^{-1} w^{*}=\left(1-\nu_{1}^{2}+p^{2}\right)^{-1}\left(\nabla^{2} q^{*}+\left(1-\nu_{1}-p^{2}\right) q^{*}\right), \tag{7}
\end{equation*}
$$

where $\nabla^{2}=\partial^{2} / \partial \varphi^{2}+(\partial / \partial \varphi) \cot \varphi$.
We seek a solution of (7) in the form of a series in Legendre polynomials which possess completeness and satisfy the boundary conditions (5):

$$
w^{*}=\sum_{n=0}^{\infty} w_{n}^{*} P_{n}\left(\cos \left(\delta_{1} \varphi\right)\right), \quad \delta_{1}=\frac{\pi}{2 \varphi_{0}} .
$$

The point load $q(t, \varphi)=P(t) \delta(\varphi)$ is also expanded in a series in Legendre polynomials:

$$
\begin{aligned}
q & =P(t)\left(2 \pi R_{1}^{2}\left(1-\cos \varphi_{0}\right)\right)^{-1} \sum_{n=0}^{\infty}(2 n+1) P_{n}\left(\cos \left(\delta_{1} \varphi\right)\right) \\
q^{*} & =P^{*}(p)\left(2 \pi R_{1}^{2}\left(1-\cos \varphi_{0}\right)\right)^{-1} \sum_{n=0}^{\infty}(2 n+1) P_{n}\left(\cos \left(\delta_{1} \varphi\right)\right) .
\end{aligned}
$$

Substituting the expansions of w^{*} and q^{*} into (7), we obtain

$$
\begin{gathered}
w_{n}^{*}=P^{*}\left(1-\nu_{1}^{2}\right)(2 n+1)\left(p^{2}+B\right)\left(2 \pi R_{1} h E_{1}\left(1-\cos \varphi_{0}\right)\left(p^{4}+p^{2} A_{2}+A_{0}\right)\right)^{-1} \\
B=n \delta_{1}\left(n \delta_{1}+1\right)+\nu_{1}-1, \quad A_{2}=n \delta_{1}\left(n \delta_{1}+1\right)+3 \nu_{1}+1 \\
A_{0}=\left(1-\nu_{1}^{2}\right) n \delta_{1}\left(n \delta_{1}+1\right)-2\left(1-\nu_{1}^{2}\right)
\end{gathered}
$$

Since

$$
p^{4}+p^{2} A_{2}+A_{0}=\left(p^{2}+\omega_{1}^{2}\right)\left(p^{2}+\omega_{2}^{2}\right), \quad \omega_{1}^{2}=\left(A_{2}+\sqrt{A_{2}^{2}-4 A_{0}}\right) / 2, \quad \omega_{2}^{2}=\left(A_{2}-\sqrt{A_{2}^{2}-4 A_{0}}\right) / 2
$$

we obtain an expression for which the Laplace transform is tabulated [2]. Finally, the displacement of the shell w takes the form

$$
\begin{equation*}
w(\varphi, \tau)=\frac{1-\nu_{1}^{2}}{2 \pi R_{1} h E_{1}\left(1-\cos \varphi_{0}\right)} \int_{0}^{\tau} P\left(\tau_{1}\right) \sum_{n=0}^{\infty}(2 n+1)\left[L_{1 n} \sin \left(\omega_{1}\left(\tau-\tau_{1}\right)\right)+L_{2 n} \sin \left(\omega_{2}\left(\tau-\tau_{1}\right)\right)\right] P_{n}\left(\cos \left(\delta_{1} \varphi\right)\right) d \tau_{1} \tag{8}
\end{equation*}
$$

$$
L_{i n}=\left(B-\omega_{i}^{2}\right)\left(\omega_{i}\left(\omega_{1}^{2}-\omega_{2}^{2}\right)\right)^{-1}, \quad i=1,2
$$

Substituting (2) and (8) and expressions for α corresponding to various models of local plastic compression into (1), we arrive at a nonlinear integral equation for $P(t)$. This equation is solved by the following iterative scheme [1]:

1) $\tau_{i}=\tau i$;
2) $s_{i}=s_{i-1}+V_{i-1} \tau+y_{i-1} \tau^{2} / 2$;
3) $w_{i}=\tau \frac{1-\nu_{1}^{2}}{2 \pi R_{1} h E_{1}\left(1-\cos \varphi_{0}\right)} \sum_{n=0}^{\infty} \sum_{j=1}^{i-1} P_{j}(2 n+1)\left[L_{1 n} \sin \left(\omega_{1}(i-j) \tau\right)+L_{2 n} \sin \left(\omega_{2}(i-j) \tau\right)\right]$;
4) $\alpha_{i}=s_{i}-w_{i}$;
5) P_{i} is calculated for α_{i};
6) $y_{i}=-P_{i} / m$;
7) $V_{i}=V_{i-1}+y_{i} \tau$.

The initial conditions are $\left.V\right|_{i=0}=V_{0} / c, s_{0}=0$, and $y_{0}=0$.
Given α_{i}, we calculate P_{i} using the solution of the contact problem. The following models are employed:

- For a spherical impactor with curvature radius at the contact point R_{2} :

1) elastoplastic model $[3,4]$

$$
\alpha=\left\{\begin{array}{l}
b P^{2 / 3}, \quad P_{\max }<P_{1}, \quad d P / d t>0, \tag{9}\\
b_{f} P^{2 / 3}+\alpha_{p}\left(P_{\max }\right), \quad d P / d t<0, \quad P_{\max }>P_{1} \\
(1+\beta) c_{1} P^{1 / 2}+(1-\beta) P d, \quad d P / d t>0, \quad P_{\max }>P_{1}
\end{array}\right.
$$

where $b=R^{-1 / 3}(3 /(4 E))^{2 / 3}, R^{-1}=R_{2}^{-1}-R_{1}^{-1}, E=E_{1} E_{2}\left(\left(1-\nu_{1}^{2}\right) E_{2}+\left(1-\nu_{2}^{2}\right) E_{1}\right)^{-1}, P_{1}=\chi^{3}(3 R /(4 E))^{2}$, $\chi=\pi k \lambda(k$ is the smallest of the two plastic constants of the colliding bodies and $\lambda=5.7), b_{f}=R_{f}^{-1 / 3}(3 /(4 E))^{2 / 3}$, $R_{f}=(4 / 3) E P_{\max }^{1 / 2} \chi^{-3 / 2}, \alpha_{p}\left(P_{\max }\right)=(1-\beta) P_{\max }\left(2 \chi R_{p}\right)^{-1}, R_{p}^{-1}=R^{-1}-R_{f}^{-1}, \beta=0.33, c_{1}=3 \chi^{1 / 2}(8 E)^{-1}$, and $d=(2 \chi R)^{-1}$;
2) Kil'chevskii model [5]

$$
\alpha=\left\{\begin{array}{l}
b P^{2 / 3}, \quad P<P_{0}, \quad d P / d t>0 \tag{10}\\
b P^{2 / 3}+P d, \quad P>P_{0}, \quad d P / d t>0 \\
b P^{2 / 3}+P_{\max } d, \quad P_{\max }>P_{0}, \quad d P / d t<0
\end{array}\right.
$$

where $P_{0}=(4 / 3) E a_{0}^{3} R^{-1}$ and $a_{0}=\pi k R(0.62 E)^{-1}$;
3) Hertz model

$$
\begin{equation*}
\alpha=b P^{2 / 3} \tag{11}
\end{equation*}
$$

4) rigid-plastic model [follows from (9) if the elastic terms are ignored]

$$
\begin{equation*}
\alpha=(1-\beta) P d \tag{12}
\end{equation*}
$$

Fig. 1. Dependence $P(t)$ for $V_{0}=0.5 \mathrm{~m} / \mathrm{sec}\left(P_{1}=4470.14 \mathrm{~N}, P_{2}=1609.58 \mathrm{~N}\right.$, $2 \gamma=150^{\circ}, t_{1}=0.0002531647 \mathrm{sec}$, and $\left.t_{2}=0.0006991468 \mathrm{sec}\right)$: curve 1 refers to the elastoplastic model for a sphere (9), curve 2 to the Kil'chevskii model (10), curve 3 to the Hertz model (11), curve 4 to the rigid-plastic model (12), curve 5 to the elastic model for a cone (13), and curve 6 to the elastoplastic model for a cone (14).

Fig. 2

Fig. 3

Fig. 2. Dependence $P(t)$ for $V_{0}=50 \mathrm{~m} / \mathrm{sec}\left(P_{1}=490.28 \mathrm{kN}, P_{2}=744.3 \mathrm{kN}, 2 \gamma=150^{\circ}\right.$, $t_{1}=0.0001648514 \mathrm{sec}$, and $t_{2}=0.0001501326 \mathrm{sec}$) (notation same as in Fig. 1).

Fig. 3. Dependence $P(t)$ for $V_{0}=1 \mathrm{~m} / \mathrm{sec}\left(P_{1}=9194.98 \mathrm{~N}, P_{2}=18352.5 \mathrm{~N}, 2 \gamma=178^{\circ}\right.$, $t_{1}=0.0002296145 \mathrm{sec}$, and $t_{2}=0.0001766265 \mathrm{sec}$) (notation same as in Fig. 1).

- For a conical impactor with the opening angle 2γ :

1) elastic model [6]

$$
\begin{equation*}
\alpha=(\pi \cot \gamma /(2 E))^{1 / 2} P^{1 / 2} \tag{13}
\end{equation*}
$$

2) elastoplastic model [7]

$$
\alpha=\left\{\begin{array}{l}
c_{2} P^{1 / 2}, \quad d P / d t>0 \tag{14}\\
(P \chi)^{1 / 2} E_{1}^{-1}+\alpha_{p, \max }, \quad d P / d t \leqslant 0
\end{array}\right.
$$

where $c_{2}=\cot \gamma(1-\delta) \chi^{-1 / 2}+(1+2(\delta-1) / \pi) \chi^{1 / 2} E^{-1}, \alpha_{p, \max }=(1-\delta)\left(P_{\max } / \chi\right)^{1 / 2}(\cot \gamma-2 \chi /(\pi E))$, and $\delta=0.22$.

Figures 1-3 show curves of $P(t)$ obtained with the use of the models of local plastic compression (9)-(14) for the following parameters: shell radius $R_{1}=1 \mathrm{~m}$, shell thickness $h=0.01 \mathrm{~m}$, shell opening angle $\varphi_{0}=90^{\circ}$, radius of the spherical impactor $R_{2}=0.02 \mathrm{~m}$, and mass of the impactor $m=0.25 \mathrm{~kg}$. The shell and impactor were made of steel $\left[P_{1}, P_{2}\right.$ and t_{1}, t_{2} are the maximum values of the contact force and the duration of contact for spherical and conical impactors for the elastoplastic models (9) and (14), respectively].

One can see from Figs. 1-3 that the solutions based on models (9) and (14) agree well with the experimental data of [8]. The Hertz model (11) gives satisfactory results for $V_{0}<0.15 \mathrm{~m} / \mathrm{sec}$, and the rigid-plastic model (12) is applicable only for $V_{0}>10 \mathrm{~m} / \mathrm{sec}$. For the elastic model of a cone (13), the error in determining the main characteristics of the impact can be as great as 100%. The Kil'chevskii model (10) also leads to a considerable error.

REFERENCES

1. S. P. Timoshenko, Strength and Vibration of Structural Members [Russian translation], Nauka, Moscow (1975).
2. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Company, New York (1968).
3. V. M. Aleksandrov and B. L. Romalis, Contact Problems in Mechanical Engineering [in Russian], Mashinostroenie, Moscow (1986).
4. V. M. Aleksandrov, I. G. Kadomtsev, and L. B. Tsaryuk, "Axisymmetric contact problems for elastoplastic bodies," Trenie Iznos, 1, No. 1, 16-26 (1984).
5. N. A. Kil'chevskii, Dynamic Contact Compression of Solids. Impact [in Russian], Naukova Dumka, Kiev (1976).
6. I. Ya. Shtaerman, Contact Problem of Elastic Theory [in Russian], Gostekhteoretizdat, Moscow-Leningrad (1949).
7. I. G. Kadomtsev, "Axisymmetric elastoplastic collision of two bodies, one of which is conical," Izv. Sev.-Kavk. Nauch. Tsentra Vyssh. Shk. Estestv. Nauki, No. 4, 50-54 (1990).
8. G. S. Batuev, Yu. V. Golubkov, A. K. Efremov, and A. A. Fedosov, Engineering Methods for Analysis of Shock Processes [in Russian], Mashinostroenie, Moscow (1977).
